Artificial Intelligence for Perioperative Medicine in Anesthesia: Present State and Future Perspectives of AI in Anesthesiology

Artificial Intelligence for Perioperative Medicine in Anesthesia

Authors

  • Maryam Mirza King Edward Medical University, Lahore, Pakistan
  • Maidah Mehtab King Edward Medical University, Lahore, Pakistan
  • Benish Islam King Edward Medical University, Lahore, Pakistan
  • Sumbal Shahbaz Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.55735/hjprs.v5i1.330

Keywords:

Anesthesiology, Artificial intelligence, Perioperative medicine

Abstract

The latest development of artificial intelligence has recast perioperative medicine, especially anesthesia. This review combined the knowledge gained from various studies of artificial intelligence applications in the development of models on risk stratification, event prediction, and intensive care in the perioperative context. Further, external validation of these models was performed to prove their reliability. Integration of electronic health records will offer real-time support for anesthesiologists to make better decisions and predict complications. This review has been performed with a systematic search through databases such as PubMed, Journal of Anesthesia & Analgesia, Open Journal of Anesthesiology, MDPI Open Access Journal, National Library of Medicine, ResearchGate, and Korean Journal of Anesthesiology, by using appropriate keywords relevant to “AI in Anesthesiology.” Google Scholar was the primary tool. Inclusion criteria considered relevance, peer-reviewed status, and publication credibility. Data synthesis focused on current AI applications, challenges, future perspectives, and case studies. Quality assessment ensured reliability, and the iterative process allowed for continuous updates. Thorough documentation and citation practices maintained transparency. This approach aims to offer a concise, comprehensive analysis of AI’s role in anesthesiology’s perioperative landscape. The narrative review deals with the transformational role of AI in clinical anesthesia, ranging from machine learning applications to closed loops and robotic precision. Against all the enormous potential, a few challenges are discussed: ethical ones and those related to technology adoption. This changing role of the anesthesiologist in expanded perioperative care is powered by artificial intelligence for safer practices. This scoping review examines emerging uses of artificial intelligence in anesthesiology and reviews the impact on clinical care. From perioperative support and outpatient pain management in the case of anesthesiologists to the technology’s limitations, which very well place the onus back on the clinicians with respect to developing artificial intelligence itself – the implications all bear witness that artificial intelligence stands forth as the pivotal force upon which progresses in perioperative practices revolve.

References

Cascella, M., Tracey, M. C., Petrucci, E., & Bignami, E. G. (2023). Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. Surgeries, 4(2), 264–274. https://doi.org/10.3390/surgeries4020027

Maheshwari, K., Cywinski, J. B., Papay, F., Khanna, A. K., & Mathur, P. (2022). Artificial Intelligence for Perioperative Medicine: Perioperative Intelligence. Anesthesia & Analgesia, Publish Ahead of Print. https://doi.org/10.1213/ane.0000000000005952

Singh, M., & Nath, G. (2022). Artificial intelligence and anesthesia: A narrative review. Saudi Journal of Anaesthesia, 16(1), 86. https://doi.org/10.4103/sja.sja_669_21

Lee, J., Woo, J., Kang, A. R., Jeong, Y.-S., Jung, W., Lee, M., & Kim, S. H. (2020). Comparative Analysis on Machine Learning and Deep Learning to Predict Post-Induction Hypotension. Sensors, 20(16), 4575. https://doi.org/10.3390/s20164575

Bihorac, A., Ozrazgat-Baslanti, T., Ebadi, A., Motaei, A., Madkour, M., Pardalos, P. M., Lipori, G., Hogan, W. R., Efron, P. A., Moore, F., Moldawer, L. L., Wang, D. Z., Hobson, C. E., Rashidi, P., Li, X., & Momcilovic, P. (2019). MySurgeryRisk. Annals of Surgery, 269(4), 652–662. https://doi.org/10.1097/sla.0000000000002706

Hewson, D. W., & Bedforth, N. M. (2023). Closing the gap: artificial intelligence applied to ultrasound-guided regional anaesthesia. British Journal of Anaesthesia, 130(3), 245–247. https://doi.org/10.1016/j.bja.2022.12.005

Kovarik, C. L., Sanabria, B., & Stoff, B. K. (2022). Image Consent and the Development of Image-Based Artificial Intelligence. JAMA Dermatology, 158(5), 589.

https://doi.org/10.1001/jamadermatol.2022.0689

Maheshwari, K., Cywinski, J. B., Papay, F., Khanna, A. K., & Mathur, P. (2022). Artificial Intelligence for Perioperative Medicine: Perioperative Intelligence. Anesthesia & Analgesia, Publish Ahead of Print. https://doi.org/10.1213/ane.0000000000005952

Kwak, K.-H. (2017). Postdural puncture headache. Korean Journal of Anesthesiology, 70(2), 136.

https://doi.org/10.4097/kjae.2017.70.2.136

Beecher, H. (1941). The First Anesthesia Death with Some Remarks Suggested by It on the Fields of the Laboratory and the Clinic in the Appraisal of New Anesthetic Agents. Anesthesiology, 2(4), 443–449. https://doi.org/10.1097/00000542-194107000-00008

Zissos, A., & Strunin, L. (1985). Computers in anaesthesia. Canadian Journal of Anesthesia/Journal Canadien D’anesthésie, Volume 32, Issue 4. https://doi.org/10.1007/BF03011342

Huang, L., Chen, X., Liu, W., Shih, P.-C., & Bao, J. (2022). Automatic Surgery and Anesthesia Emergence Duration Prediction Using Artificial Neural Networks. Journal of Healthcare Engineering, 2022, 2921775. https://doi.org/10.1155/2022/2921775

Cascella, M., Tracey, M. C., Petrucci, E., & Bignami, E. G. (2023). Exploring Artificial Intelligence in Anesthesia: A Primer on Ethics, and Clinical Applications. Surgeries, 4(2), 264–274. https://doi.org/10.3390/surgeries4020027

Hatib, F., Jian, Z., Buddi, S., Lee, C., Settels, J., Sibert, K., Rinehart, J., & Cannesson, M. (2018). Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology, 129(4), 663–674.

https://doi.org/10.1097/aln.0000000000002300

Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019b). Causability and explainability of artificial intelligence in medicine. WIREs Data Mining and Knowledge Discovery, 9(4).

https://doi.org/10.1002/widm.1312

Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O., & Rosman, G. (2019). Artificial Intelligence in Anesthesiology. Anesthesiology, 132, 1.

https://doi.org/10.1097/aln.0000000000002960

Lee, C. K., Hofer, I., Gabel, E., Baldi, P., & Cannesson, M. (2018). Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology, 129(4), 649–662. https://doi.org/10.1097/aln.0000000000002186

Cai, X., Wang, X., Zhu, Y., Yao, Y., & Chen, J. (2025). Advances in automated anesthesia: a comprehensive review. Anesthesiology and Perioperative Science, 3(1). https://doi.org/10.1007/s44254-024-00085-z

Zaouter, C., Joosten, A., Rinehart, J., Struys, M. M. R. F., & Hemmerling, T. M. (2020). Autonomous Systems in Anesthesia: Where Do We Stand in 2020? A Narrative Review. Anesthesia and Analgesia, 130(5), 1120–1132. https://doi.org/10.1213/ANE.0000000000004646

Shah, S. (2013). McSleepy, da Vinci, Kepler Intubation System et al. Indian Journal of Anaesthesia, 57(1), 101.

https://doi.org/10.4103/0019-5049.108597

Tighe, P. J., Badiyan, S. J., Luria, I., Lampotang, S., & Parekattil, S. (2010). Robot-Assisted Airway Support. Anesthesia & Analgesia, 111(4), 929–931

https://doi.org/10.1213/ane.0b013e3181ef73ec

Hemmerling, T. M., Wehbe, M., Zaouter, C., Taddei, R., & Morse, J. (2012). The Kepler Intubation System. Anesthesia & Analgesia, 114(3), 590–594.

https://doi.org/10.1213/ane.0b013e3182410cbf

Morse, J., Terrasini, N., Wehbe, M., Philippona, C., Zaouter, C., Cyr, S., & Hemmerling, T. M. (2014). Comparison of success rates, learning curves, and inter-subject performance variability of robot-assisted and manual ultrasound-guided nerve block needle guidance in simulation. British Journal of Anaesthesia, 112(6), 1092–1097. https://doi.org/10.1093/bja/aet440

Joosten, A., Jame, V., Alexander, B., Chazot, T., Liu, N., Cannesson, M., Rinehart, J., & Barvais, L. (2019). Feasibility of Fully Automated Hypnosis, Analgesia, and Fluid Management Using 2 Independent Closed-Loop Systems During Major Vascular Surgery. Anesthesia & Analgesia, 128(6), e88–e92. https://doi.org/10.1213/ane.0000000000003433

Olsen, R. M., Aasvang, E. K., Meyhoff, C. S., & Dissing Sorensen, H. B. (2018). Towards an automated multimodal clinical decision support system at the post anesthesia care unit. Computers in Biology and Medicine, 101, 15–21. https://doi.org/10.1016/j.compbiomed.2018.07.018

Hofer, I. S., Burns, M., Kendale, S., & Wanderer, J. P. (2020). Realistically Integrating Machine Learning Into Clinical Practice. Anesthesia & Analgesia, 130(5), 1115–1118. https://doi.org/10.1213/ane.0000000000004575

Lee, C. K., Hofer, I., Gabel, E., Baldi, P., & Cannesson, M. (2018). Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology, 129(4), 649–662. https://doi.org/10.1097/aln.0000000000002186

Connor, C. W., & Segal, S. (2011). Accurate Classification of Difficult Intubation by Computerized Facial Analysis. Anesthesia & Analgesia, 112(1), 84–93. https://doi.org/10.1213/ane.0b013e31820098d6

De Cassai, A., Boscolo, A., Tonetti, T., Ban, I., & Ori, C. (2019). Assignment of ASA-physical status relates to anesthesiologists’ experience: a survey-based national-study. Korean Journal of Anesthesiology, 72(1), 53–59. https://doi.org/10.4097/kja.d.18.00224

Fritz, B. A., Cui, Z., Zhang, M., He, Y., Chen, Y., Kronzer, A., Ben Abdallah, A., King, C. R., & Avidan, M. S. (2019). Deep-learning model for predicting 30-day postoperative mortality. British Journal of Anaesthesia, 123(5), 688–695. https://doi.org/10.1016/j.bja.2019.07.025

Hill, B. L., Brown, R., Gabel, E., Rakocz, N., Lee, C., Cannesson, M., Baldi, P., Olde Loohuis, L., Johnson, R., Jew, B., Maoz, U., Mahajan, A., Sankararaman, S., Hofer, I., & Halperin, E. (2019). An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data. British Journal of Anaesthesia, 123(6), 877–886. https://doi.org/10.1016/j.bja.2019.07.030

Cyril Busschots Martins, David De Bels, Honore, P. M., & Sébastien Redant. (2020). Early prediction of acute kidney injury by machine learning: Should we add the urine output criterion to improve this new tool? Journal of Translational Internal Medicine, 8(4), 201–202. https://doi.org/10.2478/jtim-2020-0031

Khanna, A. K., Bergese, S. D., Jungquist, C. R., Morimatsu, H., Uezono, S., Lee, S., Ti, L. K., Urman, R. D., McIntyre, R., Tornero, C., Dahan, A., Saager, L., Weingarten, T. N., Wittmann, M., Auckley, D., Brazzi, L., Le Guen, M., Soto, R., Schramm, F., & Ayad, S. (2020). Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial. Anesthesia & Analgesia, 131(4), 1012–1024. https://doi.org/10.1213/ane.0000000000004788

Ford, M. K. (2010). Systematic Review: Prediction of Perioperative Cardiac Complications and Mortality by the Revised Cardiac Risk Index. Annals of Internal Medicine, 152(1), 26. https://doi.org/10.7326/0003-4819-152-1-201001050-00007

Bihorac, A., Ozrazgat-Baslanti, T., Ebadi, A., Motaei, A., Madkour, M., Pardalos, P. M., Lipori, G., Hogan, W. R., Efron, P. A., Moore, F., Moldawer, L. L., Wang, D. Z., Hobson, C. E., Rashidi, P., Li, X., & Momcilovic, P. (2019). MySurgeryRisk. Annals of Surgery, 269(4), 652–662. https://doi.org/10.1097/sla.0000000000002706

Mathis, M. R., Engoren, M. C., Joo, H., Maile, M. D., Aaronson, K., Burns, M., Sjoding, M., Douville, N. J., Janda, A. M., Hu, Y., Najarian, K., & Kheterpal, S. (2020). Early Detection of Heart Failure with Reduced Ejection Fraction using Perioperative Data among Non-Cardiac Surgical Patients: A Machine Learning Approach. Anesthesia and Analgesia, 130(5), 1188–1200. https://doi.org/10.1213/ANE.0000000000004630

Mazo, V., Sabaté, S., Canet, J., Gallart, L., de Abreu, M. G., Belda, J., Langeron, O., Hoeft, A., & Pelosi, P. (2014). Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology, 121(2), 219–231. https://doi.org/10.1097/ALN.0000000000000334

Bolourani, S., Wang, P., Patel, V. M., Manetta, F., & Lee, P. C. (2020). Predicting respiratory failure after pulmonary lobectomy using machine learning techniques. Surgery, 168(4), 743–752. https://doi.org/10.1016/j.surg.2020.05.032

Chen, C., Yang, D., Gao, S., Zhang, Y., Chen, L., Wang, B., Mo, Z., Yang, Y., Hei, Z., & Zhou, S. (2021). Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation. Respiratory Research, 22(1). https://doi.org/10.1186/s12931-021-01690-3

Prowle, J. R., Forni, L. G., Bell, M., Chew, M. S., Edwards, M., Grams, M. E., Grocott, M. P. W., Liu, K. D., McIlroy, D., Murray, P. T., Ostermann, M., Zarbock, A., Bagshaw, S. M., Bartz, R., Bell, S., Bihorac, A., Gan, T. J., Hobson, C. E., Joannidis, M., & Koyner, J. L. (2021). Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nature Reviews Nephrology, 17(9), 605–618. https://doi.org/10.1038/s41581-021-00418-2

Lee, H.-C., Yoon, H.-K., Nam, K., Cho, Y., Kim, T., Kim, W., & Bahk, J.-H. (2018). Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. Journal of Clinical Medicine, 7(10), 322. https://doi.org/10.3390/jcm7100322

Adhikari, L., Ozrazgat-Baslanti, T., Ruppert, M., Madushani, R. W. M. A., Paliwal, S., Hashemighouchani, H., Zheng, F., Tao, M., Lopes, J. M., Li, X., Rashidi, P., & Bihorac, A. (2019). Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analytics. PLOS ONE, 14(4), e0214904. https://doi.org/10.1371/journal.pone.0214904

Tseng, P.-Y., Chen, Y.-T., Wang, C.-H., Chiu, K.-M., Peng, Y.-S., Hsu, S.-P., Chen, K.-L., Yang, C.-Y., & Lee, O. K.-S. (2020). Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Critical Care, 24(1). https://doi.org/10.1186/s13054-020-03179-9

Kendale, S., Kulkarni, P., Rosenberg, A. D., & Wang, J. (2018). Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension. Anesthesiology, 129(4), 675–688.

https://doi.org/10.1097/aln.0000000000002374

Kang, A. R., Lee, J., Jung, W., Lee, M., Park, S. Y., Woo, J., & Kim, S. H. (2020). Development of a prediction model for hypotension after induction of anesthesia using machine learning. PLoS ONE, 15(4).

https://doi.org/10.1371/journal.pone.0231172

Hatib, F., Jian, Z., Buddi, S., Lee, C., Settels, J., Sibert, K., Rinehart, J., & Cannesson, M. (2018). Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology, 129(4), 663–674.

https://doi.org/10.1097/aln.0000000000002300

Wijnberge, M., Geerts, B. F., Hol, L., Lemmers, N., Mulder, M. P., Berge, P., Schenk, J., Terwindt, L. E., Hollmann, M. W., Vlaar, A. P., & Veelo, D. P. (2020). Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery. JAMA, 323(11), 1052. https://doi.org/10.1001/jama.2020.0592

Lee, S., Lee, H.-C., Chu, Y. S., Song, S. W., Ahn, G. J., Lee, H., Yang, S., & Koh, S. B. (2021). Deep learning models for the prediction of intraoperative hypotension. British Journal of Anaesthesia, 126(4), 808–817. https://doi.org/10.1016/j.bja.2020.12.035

Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K.-W., Newman, S.-F., Kim, J., & Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0

Saadeh, W., Khan, F. H., & Altaf, M. A. B. (2019). Design and Implementation of a Machine Learning Based EEG Processor for Accurate Estimation of Depth of Anesthesia. IEEE Transactions on Biomedical Circuits and Systems, 13(4), 658–669.

https://doi.org/10.1109/tbcas.2019.2921875

Park, Y., Han, S.-H., Byun, W., Kim, J.-H., Lee, H.-C., & Kim, S.-J. (2020). A Real-Time Depth of Anesthesia Monitoring System Based on Deep Neural Network With Large EDO Tolerant EEG Analog Front-End. IEEE Transactions on Biomedical Circuits and Systems, 14(4), 825–837. https://doi.org/10.1109/TBCAS.2020.2998172

Ermer, S. C., Farney, R. J., Johnson, K. B., Orr, J. A., Egan, T. D., & Brewer, L. M. (2020). An Automated Algorithm Incorporating Poincaré Analysis Can Quantify the Severity of Opioid-Induced Ataxic Breathing. Anesthesia & Analgesia, 130(5), 1147–1156.

https://doi.org/10.1213/ane.0000000000004498

Kite-Powell, J. (2020). Artificial Intelligence Set To Dominate Operating Rooms By 2024. Forbes. https://www.forbes.com/sites/jenniferhicks/2020/06/25/artificial-intelligence-set-to-dominate-operating-rooms-by-2024/

Oliver, M., Allyn, J., Rémi Carencotte, Allou, N., & Ferdynus, C. (2023). Introducing the BlendedICU dataset, the first harmonized, international intensive care dataset. Journal of Biomedical Informatics, 146, 104502–104502. https://doi.org/10.1016/j.jbi.2023.104502

Knaus, W. A., Draper, E. A., Wagner, D. P., & Zimmerman, J. E. (1985). APACHE II: a severity of disease classification system. Critical Care Medicine, 13(10), 818–829.

https://pubmed.ncbi.nlm.nih.gov/3928249/

Knaus, W. A., Wagner, D. P., Draper, E. A., Zimmerman, J. E., Bergner, M., Bastos, P. G., Sirio, C. A., Murphy, D. J., Lotring, T., Damiano, A., & Harrell, F. E. (1991). The APACHE III Prognostic System. Chest, 100(6), 1619–1636. https://doi.org/10.1378/chest.100.6.1619

Beck, D. H., Taylor, B. L., Millar, B., & Smith, G. B. (1997). Prediction of outcome from intensive care. Critical Care Medicine, 25(1), 9–15. https://doi.org/10.1097/00003246-199701000-00006

Delahanty, R. J., Kaufman, D., & Jones, S. S. (2018). Development and Evaluation of an Automated Machine Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients*. Critical Care Medicine, 46(6), e481.

https://doi.org/10.1097/CCM.0000000000003011

Baker, S., Xiang, W., & Atkinson, I. (2020). Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach. Scientific Reports, 10(1)

https://doi.org/10.1038/s41598-020-78184-7

Hur, S., Ko, R.-E., Yoo, J., Ha, J., Cha, W. C., & Chung, C. R. (2020). Machine learning-based PRediction of ICU DElirium (PRIDE) Algorithm for Delirium Prediction in Intensive Care Units: A Retrospective Study (Preprint). JMIR Medical Informatics.

https://doi.org/10.2196/23401

Jauk, S., Kramer, D., Großauer, B., Rienmüller, S., Avian, A., Berghold, A., Leodolter, W., & Schulz, S. (2020). Risk prediction of delirium in hospitalized patients using machine learning: An implementation and prospective evaluation study. Journal of the American Medical Informatics Association, 27(9), 1383–1392. https://doi.org/10.1093/jamia/ocaa113

Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., & Buchman, T. G. (2018). An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Critical Care Medicine, 46(4), 547–553. https://doi.org/10.1097/CCM.0000000000002936

Kong, G., Lin, K., & Hu, Y. (2020). Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01271-2

Brower, R. G., Matthay, M. A., Morris, A., Schoenfeld, D., Thompson, B. T., & Wheeler, A. (2000). Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. The New England Journal of Medicine, 342(18), 1301–1308. https://doi.org/10.1056/NEJM200005043421801

Peine, A., Hallawa, A., Bickenbach, J., Dartmann, G., Fazlic, L. B., Schmeink, A., Ascheid, G., Thiemermann, C., Schuppert, A., Kindle, R., Celi, L., Marx, G., & Martin, L. (2021). Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. Npj Digital Medicine, 4(1).

https://doi.org/10.1038/s41746-021-00388-6

Dumont, G. A., & Ansermino, J. M. (2013). Closed-Loop Control of Anesthesia: A Primer for Anesthesiologists. Anesthesia & Analgesia, 117(5), 1130. https://doi.org/10.1213/ANE.0b013e3182973687

Smistad, E., Lie, T., Kaj, F., & Johansen. (n.d.). Real-time segmentation of blood vessels, nerves and bone in ultrasound-guided regional anesthesia using deep learning. Retrieved January 24, 2025, from https://www.eriksmistad.no/wp-content/uploads/IUS_2021___Nerve_block_segmentation.pdf

Hetherington, J., Lessoway, V., Gunka, V., Abolmaesumi, P., & Rohling, R. (2017). SLIDE: automatic spine level identification system using a deep convolutional neural network. International Journal of Computer Assisted Radiology and Surgery, 12(7), 1189–1198. https://doi.org/10.1007/s11548-017-1575-8

Lungren, M., Evans, M., Ranschaert, E., Morozov, S., & Algra, P. (n.d.). Subtitle for Clinical Medicine Covers T3_HB Second Edition Clinical Medicine Covertemplate 123 Opportunities, Applications and Risks Artificial Intelligence in Medical Imaging. http://repo.darmajaya.ac.id/4143/1/

Downloads

Published

04/12/2025

Issue

Section

Articles

Categories

How to Cite

Artificial Intelligence for Perioperative Medicine in Anesthesia: Present State and Future Perspectives of AI in Anesthesiology: Artificial Intelligence for Perioperative Medicine in Anesthesia. (2025). The Healer Journal of Physiotherapy and Rehabilitation Sciences, 5(1), 46-59. https://doi.org/10.55735/hjprs.v5i1.330

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.